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Exact wave solutions of the equations of motion of a thin plate are obtained 

for the one-dimensional case of a first approximation model. The dependence 
of the velocity of propagation of flexural-longitudinal waves on their frequency 
is computed for different values of the amplitude of the bending components. 

The nonlinear character of the relation connecting the deformations and 

displacements in the theory of thin shells may give rise to effects which can- 
not be described in terms of the linear approximation even in those cases when 

the Hooke’s law still holds [l]. The estimation of the magnitude of the dis- 
placements at which the effects caused by the geometrical nonlinearity be- 
come apparent, is of interest. 

1. Let us introduce the Cartesian x, y, z -coordinates in such a manner, that 
the plane z = 0 coincides with the middle surface of the plate. We denote the 
components of the displacements of the points of the middle surface in the X, y and 

z directions, by U, V and w s respectively. To simplify the computations, we 
shall use the first approximation model of the theory of thin shells and consider the 

case of one-dimensional motion, i.e. we shall regard U, u and w as functions of 

time t and coordinate 2. Assuming that the radii of curvature in the equations 
of motion of thin hollow shells given in [2] tend to infinity, we obtain 

(1.1) 

1 -G 3% l-G2 3v- 
--ici 0 ~~~~~~~~~~~~=o 

12 az* 

where En, a, p and h are the Young’s modulusl Poisson’s ratio, plate material 
density and its thickness, respectively. Neglecting the nonlinear terms in (1.1), we 
obtain the equations of the classical theory of plates, the conditions of applicability 
of which were estimated in [3] by comparing the theoretical dispersion curves with 
the experimental data, The second equation of the system (1.1) which describes the 
transverse wave, is independent under the assumptions made. We shall seek the solu- 

tion for u and win the form of waves propagating with equal velocities: c: u = 

u (E), w = W (E) where E = t - x/c. Let us put du!dE = X, dwldlj, = i-3 
and cgz = E*i(l, (1 - a”)) and integrate the equations for X and 2. Since 
the plate sides are physically ~~s~g~s~ble from each other, therefore the system 
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describing the flexural-longitudinal waves can be written as 

X = & (C, - 22) (1.2) 

~~+Cxz+C2(a+i)Z=O (a-$-i) 12 dp 

Since it can be shown that when a = 0 then the bending component 2 = const 

has only the non-wave solutions, we shall assume that a # 0. 

2. When the physical non~nea~ty is taken into account, the equation of longi- 
tudinal oscillations of the plate has a solution in the form of propagating isolated im- 

pulses (solitons) [4]. In the case under consideration of ~exural-longi~dinal waves 
for a similar solution should fulfil the conditions: X -+O, 2 -+ 0 and dZ/dg -+ 

0, when t+c=. Jnthiscase C,= 0 in (1.2) and the system has the follow- 
ing solutions for the bending component : 
and 2 = 2, set (2 l/$z~/(hco)). 

2=0,2=2,==24a(a+1) 
The conditions at infinity are not satisfied by 

these solutions. Since the system (1. I.) holds for hollow shells it follows that its solu- 

tions should have finite derivatives. This implies that the flexural-longitudinal waves 
have no solutions in the form of the propagating isolated impusles within the frame- 
work of the first approximation model. 

We shall seek the periodic wave solutions, Jn this case the first equation of (1.2) 
implies that C, > 0 , E~minating X from the system, we reduce the equation 

for 2 to the form 

Z4-2AZ2+Cz (A=& + 2x4) (2.1) 

According to [5], the solution of (2.1) can be expressed in terms of elliptic functions 
the actual form of which is determined by the number of positive roots of the trinom- 
ial of the right hand side of (2.1). Since the functions 

periodically, if follows from (2.1) that the sign of C, 
the form of the solution of (2.1) depends on the sign of 

pression (2.1) can conv~ienUy be written in the form 

2 and dZid5, should vanish 

is the same as that of a, and 

a. When a>O, theex- 

According to [5,6] we have 

2 = fl sn (GE), Q = (d/2)/~/a/3 (2.2) 

Here SKI denotes the elliptic sine and k = a/p is its modulus. Substituting the 
value of 2 obtained into (1.2), we obtain X. Integrating the expression for X, 
we separate the oscillatory part expressing it by the Jacobi zeta function zn [6,7]. 

At the same time we must assume, in order that the function u be periodic, that 

C, = a2 (1 - E/K) (2.31 

where K and E are complete elliptic integrals of first and second kind, respectiv- 

ely. When the relation (2.3) holds, we have 
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u = & W4J (2.4) 

Using (2.2) and choosing the integration constant appropriately, we can write the 
expression for w in the following form symmetrical with respect to w = 0 : 

(2.5) 

Here cn and dn denote the Jacobi functions, namely the elliptic cosine and the 
delta of the amplitude. The quantity ws represents the amplitude of the bending 
component of w. 

Since the periodS of the elliptic functions are expressed in terms of the complete 

elliptic integral of the first hind K(k), it is expedient to replace Q by Y = P/(4 
K). Taking (2.1) and (2.3) into account and using the relations connecting the quan- 

tities a and @, we can express them in terms of the modulus k. Thus, taking in- 

to account (2.2), (2.4) and (2.5), we can write the wave solutions of the system{ 1.1) 
for the case c > CO , describing the flexural-longitudinal oscillations, in the form 

dn (4K~c) - k cn (4K~c) 
_ v’l_ p, ’ u@ - 3c 

- 2haKy zn (4K$J (2.6) 

In order to estimate the degree of nonlinearity of the wave, we expand w into 
a Fourier series. Using the trigonometric series given in [S] for the function sn and 

integrating this series term by term, we obtain 

where won is the n -th harmonic of w (gj, K’ = K (k’), k’ = ‘t/l - k2 
is the supplements modulus. This gives, in particular, the following expression for 
the ratio of the first and second harmonics: 

Y 12 = wo1jwoz = 3 [I + 2 ch (nK’iK)l 

The following relations also hold: 

lim k40 y12 = 00, limkd %n = (2 n - ij2 

where vln is the ratio of the first and n- th harmonic. Thus, when k varies from 

zero to one, the form of the wave,component of w changes from the harmonic to the 
triangular. 

The following dimensionless quantities are useful in the numerical analysis of the 
relations (2.6): 

v = c/c,, L, = v’3 wo/~, y. = 2 h~/(~~co) (2.7) 

Fig. 1 depicts the characteristic profiles of the components u and W, and the 
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displacement profile (dashed line) obtained on a digital computer for <0 = 6.5 and 
Yg = 3.7 (k = 0.98). The values of 5 expressed as wavelengths are plotted on 

the abscissa. The values of w are reduced by the factor of about 0.76, and the ord- 
inates of the curve u (g) are increased by about 1.5 times in order to improve the 
clarity of the representation. The deformation vectors {IQ, UQ) illustrating the dis- 
placement of the points 5 = Ei of the middle surface are constructed for these points. 

If we fix & and reduce vg (or increase co for a fixed Y& then the pro- 
file of the component w will become more triangular, the component u willdecrease 
and the displacement profile will approach the profile of the component w . When 

y0 is increased, the profile of w tends to the harmonic shape, the component u 
increases and the displacement profile changes, first tending to the II -shape, and 
then to the 6t- shape. When the component u is increased still further, the equa- 
tions begin to describe self-overlapping displacement profiles which are not physically 
realizable. When v. is fixed and co decreases, the component u also decreases 
and the profiles of the bending component and of the displacement also approach the 

harmonic profiles, 

In the case a < 0 we see from (2.1) that C, <O. Let us write the equation 
for 2 in the form 

= (a2 + 22) (j3” - 2%) 

Arguments and com~tations analogous to those given above, show that the solutions 

of (1.1) can be written for the flexural-longitudinal waves with c < c,, , in the form 

arcsin [k sn (4Kv5)], u (5) = F zn (4KvQ (2.8) 

y = g {K (k) [2E (k) - K (k)]}-‘l* 

The expression for the amplitude of the n -th harmonic of the component w has the 
following form for a < 0 : 

and from this we have 

y122=n3_12i;h (nK’IK) - 11 (limg+ yIz = M, limb-,I I+,, = 

consequently, when k varies from zero to one, the waveform of the component w 

is transformed from the harmonic to the square shape. The modulus k is bounded 

in all expressions corresponding to the case a < 0 by the quantity k, where k, x 
0.91 is a root of the equation 2 E (k) = K (k). 

The characteristic profiles of the components w and 1~ and the displacement pro- 
file are shown for the case c < c o in Fig. 2, which is analogous to Fig. 1, for cn z 

0.97 and v (I = 0.66 fit = 0.9). The values of w are increased by the factor of 

3.56 and the values of the ordinates u (E) by about two times. 
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If we keep Y@ fixed and increase 50 (or keep j, fixed and increase YJ 
then the profiles of w and u will not change appreciably, the values of IL will 
increase and the displacement profile will tend to the triangular one. When Co (or 

~0 ) are further increased, the displacement profile becomes self-intersecting. When 

&, (or vO} decreases, the profile of u, tends to the harmonic, the component u 
diminishes and the displacement profile tends to the profile of w . 

-u.i?5 1 

u 0.5‘ 

Fig. 1 

Fig, 2 

ix 1 vu 

Fig. 3 

Thus, depending on the velocity of propagation, the system (1.1) admits solutions 
describing two types of coupled flexural-longitudinal waves. The period of the zeta 

function is twice as small as the period of the functions sn and cn, therefore 

from (2.6) and (2.8) it follows that the oscillation frequency of the component u is 
twice that of the bending components. These coupled waves are fully defined by two 

parameters such as e. g. the velocity of propagation and the modulus k. 

3. Since w is the most easily measured quantity, it follows that in studying the 
dependence of the velocity of propagation on the frequency it is expedient to use 

the amplitude of the bending component .vI,, as the parameter. Using the dimension- 

less quantities (2.7) we obtain from (2.5), (2.6) and (2.8) 

” = 1 

(Vz - I)'/2 Ar th (k), V > 1 (3.11 
(1 - F)‘!z arcsin (h), V < 1 

2’o = i 

v2 12t’ (CL) E (!4Y”‘, v>* 

T/‘s {R (k) [ZE (k) - K (k)j)-‘4 V < 1 

Fig.3 depicts the dependence of v on Ys for various values of CO computed 
on a digital computer. The curves shown in the graph are analogs of the dispersion 
curves for a nonlinear plate. The dashed line depicts the dispersion curve for a linear 
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plate the equation of which, written in terms of the variables T/ and Y*, has the 
form p = a’~&!. The equations of the theory of shells hold when the length of 
the expanding wave A. is greater than h. 

A = @h/(2 h), 

Introducing the dimensionless wavelength 
we can write this condition as 11 < 1. The straight line 

for which A = 1 is given in dash-dot, 
The curves situated below the straight line V = 1 correspond to a type of waves 

with a II -shaped profile of the bending component, and for these waves we have 

PO < 5* where 5, = arcsin k* = 1.1433. The curves have horizontal asymptotes 

defined by the formula V = r’i - (Co / 5#. The quantity k increases smooth- 
ly along the curve with increasing V, and tends asymptotically to k*. The 
component u increases together with it in accordance with (2.8), and becomes pre- 
dominant when k approaches k,, for any values of ce. 

The curves situated above the straight line V = 1 describe the waves with a 
triangular component w. To find their asymptotic behavior when k approaches 
unity, we use the expansion of K in powers of the auxilliary modulus. In particular, 
taking into account only the first term of the expansion we obtain K (u) = 2 (In 2 

+ Sn 1 Jf?i, and using the same approximation we find that E (u) z 1. Substit- 
uting these values into (3. l), we obtain the following asymptotic formula for 5, / 

1/E > In 2: 
YO s v2 (V2 - I)"' (26,)-‘/p (3.2) 

Compu~tions show that when &, < 2 , then formula (3.2) holds only when V =: 
1 (Vf 1.01 when &, = 0.5). For co > 10 when li = 1.5, the error of estima- 
ting vg by means of (3.2) does not exceed 4q0 and becomes smaller with diminish- 
ing v. 

Let us now find the limiting value of the distribution coefficient 3c = w,Iu, 

where u. is the amplitude of the component u . Using (2.6) and (3.l),we write 

x in the form 

x = (1 -t- k) LJ I/ J% (PL) 
Vzn, K (IL) 

(343) 

where zn, is the amplitude of the zeta function. Using the relations given in [5,7], 

we can show that zn, A 1 as k-+1. Subs~tu~g zn, = 1 into (3.3) and 

passing to the limit as k -+ 1, we find that x -+ -V. This in 
particular implies that when V + 1, then X-+0,, i.e. the component u 

becomes predominant. It should be noted that when k 3 1, the minimum value 

of the radius of curvature of the profile of w tends to zero. If h does not tend to 

infinity at the same time sufficiently rapidly, then the theory of hollow shells ceases 

to be applicable. 
From the graphs in Fig, 3 we see that when &, c< 0.1 t the curves almost 

coincide with the dispersion curve of the linear system everywhere except in the re- 
gion in which the velocity c is almost equal to co. Within this region the waves 

of both types differ appreciably from the linear wave. However, when c + co , 

the nonlinear waves degenerate into a purely longi~dinal wave satisfying the system 
(1,1) at w s 0. 
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Comparison of the dispersion curves of the classical theory of plates with the ex- 
perimental data [S] shows that in the case of frequencies for which 

1/U - 

c > et -= c* 
a)/2, the inertia of rotation of the plate element plays a significant part, This 

inertia is not, however, taken into account in deriving the initial equations (1.1). The 

influence of the rotational inertia can alter appreciably the form of the cilrves corres- 

ponding to the case e> cs* 
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